所需时间比微波电场反转的时间要短得多,因而不会产生微波加热。
界面极化及偶极转向极化产生的极化强度矢量落后于电场一个角度,产生与电场同相的电流,构成了材料内部的功率耗散,进而转换成热能。
即,微波加热依靠介质材料在微波场中的极化损耗产生热能,热量产生于材料内部而非来自外部加热源。
分子原子以及化学键之间的结合,说的模糊一点需要能量,引力。
实际上引力在专业领域就是磁性,这点在对国外材料翻译的时候有些人是频繁的弄错,国内的化学界没少闹出笑话,尤其只读书不求甚解的很多人。
微波作用在碳氢键身上,给分子键更多的矢量力,让这些分子键具有更多的方向性,利用磁性让这些分子重新排列,进而产出更多的不同产品。
真可谓,用微波真的可以做成上帝做过的事情。
按照实验室的数据微波是频率在0.3 GHz~300 GHz的电磁波,通常用于加热的微波频率为915 MHz和2 450 MHz。
当电磁波遇到物料时,电磁波可以被反射、穿透、吸收或这三种作用的任意组合,不同物料下微波的3种响应。
电磁波遇到微波透明体或微波绝缘体,微波通过但未被吸收,如玻璃、塑料和瓷器等绝缘体;电磁波遇到介于绝缘体与导体之间的物质,能够被吸收;电磁波遇到微波反射体或微波导体,微波被反射,大多数导体都能够反射微波,如铁、铝等金属。
除此之外,混合吸收材料作为复合多相材料,至少有一个相作为吸收相(高介电损耗材料),而其他相是传输相(低介电损耗材料),这种材料充分利用了微波的选择性加热特性,可加热特定部件,同时使周围材料相对不受影响。
这就要求季东来的发生设备需要进行新材料的介入,林林总总的今天过郑教授介绍,季东来推测,一旦微波裂解煤炭这项技术攻克了,至少能够产生五百项专利。
光是发生器材料的研制,在整个集团来说也是一个大项目。
至于中间的热裂解生产线改造,专业人才培养,新物质收集,和其他化工领域进行对接都是新的尝试,季东来知道自己的事大了。
整个会面,郑教授讲解的东西很杂,但是每一个标点符号都是干活,季东来和孙鹏飞收获满满。
临走的时候,郑教授让人把一些非重要资料签字解密给对方带走,季东来千恩万谢,把家里那边带来的
本章未完,请点击下一页继续阅读!