数就乘以3再加上1;如果变成偶数就除以2;如何反复不停地计算,不管这个过程中的数值变得多大,最终还是会像冰雹一样不可阻挡地迅速坠落,变成4-2-1这三个数不停地循环。
秦克现在研究的是27这个特殊的数值。
27的特殊,在于它的上升与坠落都远远超过了其余100以内的数值,秦克之前就在某篇文献里见过,说27要经过77个步骤的变换,才会达到雹程的峰值9232,再经过34个步骤,才最终跌到谷底值1。
这可是整整111个步骤!
而与27相近的奇数23,整个雹程只需要16个步骤,由此可看出27有多特殊。
正因为27的特殊,许多数学家曾尝试以27为突破口来解决冰雹猜想,且基本上已得出一个结论,那就是这是一个冰雹树的分枝关键点。
所以分枝关键点,就是指从这里分流出去的部分自然数,都有独立而强大的“冰雹效应”。
比如以27为分枝关键点,54,108……都会有比较长的雹程,“冰雹效应”超过附近的数字。
秦克在脑海里用心算就能完成27的整个上升与坠落过程,他主要计算的是有多少类似的分枝关键点,想从中发现共性规律,可惜后续的运算量越大越大,秦克暂时也没能发现什么有用的规律。
不愧是世界排名前一百的数学难题,难怪有人将之称为“下一个费马猜想”,也难怪人称“数学天才中的天才”的陶教授,也曾感叹道:“3N+1问题在二十年内不可能被目前任何一个数学方法证明。”
虽然陶教授说过这样类似放弃的话语,实际上目前世界知名数学家中,也就他给出了冰雹猜想的概率证明——“假设f是定义域为整数的函数且当n趋于无穷时f(n)趋于无穷,那么对于几乎所有的n,从n开始的3n+1序列中最小值小于f(n)”。
这算是有关冰雹猜想里目前最为重要的成果了。
发现手里的草稿本已写满了,秦克停下笔,甩了甩有些发酸的手腕。
今天对冰雹猜想的进攻,依然是无功而返。
类似的情况已出现了无数次。
时至今日,他和宁青筠只是还处在寻找证明思路的阶段,但秦克倒没觉得气馁,当初波利尼亚克猜想不也经过了大半年才搞定?现在才研究了冰雹猜想四个月,哪可能有什么大的突破,只要不断积累经验,判断哪些路走不通就行了,这样总会找到最正确的路。
本章未完,请点击下一页继续阅读!