用2级整流器,高频不可控整流器80采用4级整流器;
图4为逆变器40的5种工作状态,1-逆变器40的输出电压,2-串联谐振电路的谐振电流。-2正向谐振,II-2反向谐振,III-自由谐振,IV-1正向谐振,V-1反向谐振;
图5为输出电压给定值的理想上升曲线,1-理想给定值上升曲线,2-仿真得到的高压直流电压输出曲线;
具体实施方式
如图1所示,本领域内公知的高频高压直流电源100的拓扑。高压直流电源100使用了三级功率电路,以将电网中的三相交流电压11转换为可调节的稳定高压直流电压17。电网的三相交流电压11经可控整流电路30,及较大容量的电解电容52,得到逆变器10的直流母线电压13。可控整流电路30采用PAM控制策略可根据输出的高压直流电压17连续地调节直流母线电压13。此处可控整流晶闸管是有开关损耗的,只是开关频率低,损耗很小。也正因为开关频率低,可控整流电路30的输出响应很慢,不易频繁调整输出直流母线电压13。
直流母线电压13到高频交流高压15是通过逆变器10、串联谐振电路和高频升压变压器26实现的。逆变器10由四个全控开关管各反并联一个二极管组成,外加电容22与变压器26的漏感组成串联谐振电路,如果漏感不够,可外加一个电感24。逆变器10输出的高频脉冲电压经串联谐振电路,输入到变压器26中的是正弦电压及电流,经过变压器26的升压作用就得到了高频交流电压15。逆变器10常采用PM和PFM的控制策略,可连续跟踪输出电压17的变化,虽然采用了谐振软开关技术,在开关管开通时或关断时仍会产生一次开关损耗,较硬开关的损耗降低了一半以上。高压直流电源中的整流电路一般采用多级整流器20,可以使得整流二极管和电容的耐压值降低,体积减小。由于对高频交流电压15整流,多级整流器20采用快速整流二极管。此处的快速整流二极管并不是在电流过零点导通。各级整流电路依次导通,二极管会产生较大的开关损耗,使得高压直流电源100的整体效率降低。
如图2所示,根据本发明的一个实施例的高压直流电源200拓扑。逆变器40增加了一个全控开关管28。若开关管28断开,逆变器40的结构和逆变器10相同。直流母线电压23处增加一个电容组,采用两个电容组串联的方式。考虑到电容组36和38的均压充电,前端可采用变压器42、
本章未完,请点击下一页继续阅读!